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SOLUTION OF A CONTACT PROBLEM FOR A PLATE
WITH A DEFORMABLE INSERT

V. N. Solodovnikeov UDC 539.3.01

Contact problems with friction are solved for a rectangular plate with a circular hole into which a
ring plate (insert) is placed with a small clearance. Two versions of contact boundary conditions
are formulated. According to the proposed approzimate formulation of the problem, the boundary
conditions in both versions are satisfied not at the actual contact points but at specified pairs
of points. Therefore, it is sufficient to determine attachment, slip, contact, and contact-free
regions on just one of the contacting contours. The finite-element method and the Boussinesq
principle are used to solve the problem. One of the versions of boundary conditions, compared
to the other, gives smaller values for the strain energies of the plate and insert, the stress-
concentration coefficient, and the lengths of attachment and contact regions.

1. Basic Equations. The equations of equilibrium, the strain-displacement relations, and Hooke’s
law are written in the form [1]

o111 + o122 =0, o12,1 + 0222 = 0, eir = u11 = E7 (011 — vo). (1)
e22 = uz = E7 o9 — vouy), er2 = 0,5(u12 + ug1) = (1 + v)E lops.
Here E is the Young’s modulus, v is the Poisson’s ratio, u; are the displacements, e;; are the strains, and
oi; are the plane stresses in the Cartesian coordinates z; (¢, j = 1 and 2); subscripts | and 2 after a comma
denote partial differentiation with respect to z; and z3, respectively. The strain energy has the form
bp = / 5(—1%7)— [e3, + 2verens + €3y + 2(1 — v)edy] dzy dao.
Q

It is assumed that the thickness of the plates is constant and, without loss in generality, equal to unity.
Integration is performed over the region § occupied by the plate. For the rectangular plate, we have E = E)
and v = v and for the ring plate, £ = F3 and v = vs.

2. Boundary Conditions Outside the Contact Region. We consider a rectangular plate of width
2H and length L = Ly + L2 with a circular hole of radius R, which will be referred to as a “plate;,” and a
ring plate (insert) with outside and inside radii Ry = R — c and Ry, respectively, whose center is at the point
with the Cartesian coordinates (—c,0), ¢ = ¢ R, where ¢ is a small dimensionless clearance parameter (¢ > 0).
In view of symmetry, the solution is sought only for the upper halves of the plate and the insert {whose
undeformed states with zero clearance (¢ = 0) are shown in Fig. 1a] subject to the boundary conditions

oin1=o012=0 at zy=-L;, 0<z2<H,

Ha '—Ll le < L?.v
ug =0, o012=0 at z2= (2.1)
07 '—Ll < Iy g _Ra R < Tt < L27
up = w, ug =0 at 2y =1Ly, 0<z9< H;
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Fig. 1. Finite-elemegt grids for the plate and the insert in the
initial (a) and deformed (b) states for the contact problem
without a clearance (¢ =0, 4 = 0.3, Ey = Ej,w=1,1 =
0.4807, and b = 0.1485).

for the insert,
uy=uy=0 at p=Ry, 06K,
up =0, o12=0 for Ry<p< Ry, 0=0 and §=r.

(2.2)

The following two polar coordinate systems are used: (r,) (z1 = rcose and z2 = rsinyp) and (p,8) (z; =
pcosf — c and z2 = psinf).

The tensile force P applied on the right side of the plate and the work & done by this force are given
by the formulas

H r
p= /011 dzy, ® = /Pu':dr for 1= Lo
0 0
The dot denotes differentiation with respect to the loading parameter, which is called time 7. Below, we also
formulate boundary conditions on the contour of the insert I'; (p = Ry and 0 € 6 < =) and on the hole
contour ['; (r = Rand 0 < ¢ < 7).

3. Work of Frictional Forces in Displacement Variations. According to the virtual displacement
principle, for any displacement variations §u; satisfying the boundary conditions for the displacements (2.1)
and (2.2) and for any associated strain variations de;; the stress works in the plate and the insert is equal to
the work of the forces acting on them:

§Bp) = 6@ — 60p;, 6O gy = 8Bry. (3.1)
Here
§®5, = /aijée,-,- drydz;,  6®py = /a,-,-ae,«,- dz, dzs,
0, Q2
§6 = Péw,  §®p = /p-é'u.Rdtp, §bpy = /;3-5113, do.
r Te

14

Summation is performed over repeated subscripts i, j = 1 and 2 and integration is performed over the regions
Q; and §; occupied by the plate and the insert, respectively; p and p are the vectors of the forces acting
on I'p and I'¢ from the side opposite to the center of the insert; du and é4@ are the vectors of displacement
variations (the vectors on I'; are denoted by a hat).
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For the entire structure comprising the plate and the insert, we have
6P =5‘I’E+5‘I)f, 6Pp = 6Py + 6P g, (3.2)

i.e., 6@ is the sum of the stress work and the work of the frictional forces acting in the contact zone with
displacement variations 6@y (taken with the minus sign). Without giving the expression for 6@, we substitute
@1 and §PEy from (3.1) into (3.2) to obtain the relation

6<I>f=/p-6uRdap—/j)-6'&R1d0, (3.3)
Tp
which holds for any boundary conditions on the contours of the plate and the insert outside I', and I'c. Below
it is used to formulate the boundary conditions on I'p, and I'..
4. Interaction Between the Plate and the Insert. Equating the Cartesian coordinates of any
points ¢ € I'p and § € T'; that come in contact upon loading of the plate, we have

Rcosap-}-ul:Rlcosé—c—}-ﬁl, Rsinp 4+ uy = Rlsm9+uQ, (4.1)

where the displacement vectors w = (uj,u2) and @ = (41,u2) are determined at the points ¢ and 9
respectively, and the displacements and forces specified on I'. are denoted by a hat. We now formulate
two versions of boundary conditions on I'; and ..

Version 1. We consider the point 8 € I'c which is closest to the point ¢ and for which

cos @ = pT(cosp +€), sinf = p; !sin, ps = (1 + 2e cos o + £2)V/2.

We expand the right sides of (4.1) in Taylor series at the point 6. Neglecting products of derivatives of the
displacements @, and s by (§ ~ 8) and terms containing powers of (§ — ) higher than the first power, we
arrive at the approximate relations

Rcosg+up = Ryfcos§ — (0 — 0)sin 0] — c + 4y, (4.2)

Rsing +uy = Ry[sin @ + (§ — 6) cos 8] + .

Here, in contrast to (4.1), the values of ©; and iy are specified at the point §. We find the projections of the
displacement vectors u, = u - n¢, ug = u - I, 4, = % - n¢, and 4y = @ - l; onto the normal n, = (cos 8, sin )
and the tangent I; = (—sin8,cosf) to I'c at the point 8. From (4.2) we obtain the relations u, = ups + 4,
and ug = ugs + Ug, in which the quantities ups = Ry — ps R and up; = Rl(é — 6) must be of the order of the
displacements themselves.

The difference of the normal displacements u,s is equal to the distance between the points ¢ and @
taken with the minus sign. This difference is a known function of ¢ (or #) that is independent of time. To
climinate penetration of I', and ['c into one another outside the contact region during deformation, we require
that the inequality u, — %, > ups hold for each pair of the points ¢ and §. The values of u,s do not coincide
with the values of the displacements v, = upc = —cp; (1 + cos ¢) specified in the case of an absolutely rigid
insert [2]. We have ups < upe < 0, and the difference (upe — ups) is small (a quantity of order ¢?). To ensure
continuous transition to the contact conditions in [2] as the stiffness of the insert increases without bound,
we make the nonpenetration condition stronger by setting u,s = up.

The difference of the tangential displacements ugs is equal, with one-place accuracy, to the length of
the arc on I'; between the points § and g. The quantity ug, takes into account possible slippage of I', and
. about one another and changes in pairs of contacting points. Calculating Ugs, we approx1mately determme
the coordinate of the point that is in contact with the point by the formula 6=0+ R ugs. In the presence
of friction, the quantity ugs depends at each time on the history of loading of the structure and it is treated,
together with displacements, as the sought function of ¢ (or 8) and time 7. In the contact region, the partial

derivative tg; with respect to 7 is the slip velocity. If ugy = 0, then §= é, the pair of contacting points does
not change, and attachment occurs.
We denote the contact and contact-free regions on I'y by I'p1 and I'pp, respectively. The regions on
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TABLE 1

Version | w| v| p| q| @| | p| ¢ uws| vs| v T3] Ta! T

1 Up | UG | Pp | Po | Uy | Tg Pp | Do Ups | Ugs | 11 Fpl Fp2 rp

2 Ur | Uyp | Pr | Py iy ﬁ'w Pr i’tp Urs | Ups | V2 I | T2 | I,

I'c formed by the points closest to the corresponding points on Tp; and Tp; are denoted by ['c; and T,
respectively (I'p = I'p1 U2 and I'c = I’ UT2). We determine the projections of the force vectors p, = p-n,
and pg = p -l at the point ¢ and p, = p- n. and py = p- I at the point 8 onto the normal and the tangent
to I'c. The quantities p, = Gpp, Py = 6,4, and Ggy are the stress components on the contour of the insert
T in the polar coordinates (p,8). Let, with variation in displacements, attachment occur everywhere in the
contact region: du, = §i, and duy = §ig. Then, the work due to friction is equal to zero and from (3.3), with
allowance for the relations Rdy = v; Ry df and v1 = p%(1 — )~ }(1 + ecos ) ™!, we obtain

60 =0= / {(mpp = Pp)oup + (71p9 — Po)0ug)R1d0 + / [11(ppbu, + pgdug) — (Ppbit, + Podig)| Ry db.
rCl rc2

In these integrals we set the coefficients of arbitrary variations in displacements equal to zero. Bearing in mind
that in the contact region, the normal forces on I', and I'; are negative because of compression, we arrive at
the boundary conditions

Up —TUp = Ups, ug—lg=1ugs, Pp="Pp, Po=7"Ps, Pp<0 on Tp, (43)
pP=p0=ﬁP=ﬁ9=0a up"'&p>ups on Fp2- '
Here the values of u,, ug, py, and py are determined at the point ¢ and the values of i,, g, p,, and py are
determined at the point 6; for brevity, the regions on I'c are not indicated; ups = upe = —cp; (1 + cos ).
By virtue of (4.3), we have p = y1p on I';; and p = p = 0 on ['pp. The coeflicient ; takes into account
the difference in dimensions between the contact sites at the edges of the plate and the insert and the angle
between these sites in the initial undeformed state.
Version 2. We now expand the left sides of equalities (4.1) in a Taylor series at the point ¢ € T,
which is closest to § and for which

cosp = r; (1 —¢)cosf —¢], sing =r;1(1 —¢)sind,
rs = [1 = 26(1 — €)(1 + cos 6)}}/2.

Further, the boundary conditions are formulated similarly to version 1 but for the following projections of the
displacement and force vectors onto the normal m, = (cos,sin ) and the tangent I, = (—sing,cos¢) to
[p:ur = u-np,up = u-lp, pr = p-my, and p, = p-1, at the point ¢ and &, = w-np, 4y = w-lp, pr = Pp-nyp,
and p, = P - lp at the point 6. The quantities p, = Orr, pp = Ory, and o, are the stress components on I'p
in the plate in the polar coordinates (r,). We obtain the equalities u; = urs + U, and uy = ups + Uy, in
which urs = R(rs — 1) and uys = R($ — ¢). To ensure continuous transition to the contact conditions of [2]
as the stiffness of the insert increases without bound, we make the nonpenetration condition u, — @y > urs
stronger by setting u;s = urc = —¢(1 + cos ). We determine the contact region I'c; and the contact-free
region ['cz on I'c and the regions I'y; and I'yz on I'p formed by the points closest to the corresponding points
from T'c1 and Feo. In this case, the regions T'p1, T'p2, T'c1, and Iy can differ from those in version 1. We have
I'p =Tp1UTp2 and I = 'y UT 2. The force vectors in the contact region are related by the formula p = v2p,
where 72 = r;z[l —&(1 + cos é)]

We use the notation given in the first row of Table 1, which is common for both versions, for the
quantities and regions listed in the last two rows of Table 1. Using the common notation, we write the
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boundary conditions for versions 1 and 2 in the form

u—td=u, v-b=v,, p=7p, §¢=79, p<0 on Iy, (4.4)

p=q=p=4=0, u—-uz2u; on I,

In version 1, these conditions coincide with (4.3). For the contact region, from p < 0 it follows that p < 0
and the nonpenetration condition v — % > us holds everywhere on I' = T'; U T';. Boundary conditions (4.4)
are formulated irrespective of the materials of the plate and insert, the ratio of their stiffnesses, and the
properties of the contacting surfaces. Below, they are supplemented by boundary conditions that take friction
into account.

We now use relation (3.3) not for displacement variations but for their velocities. Replacing 6@ ¢ by d f
and integrating over I'c, we obtain

b5 = [ly(pi+ i) - (4t + §9)) .
Te

Next, using the equalities p = yp, § = v¢, & = 4,and v — 0 = v, which follow from (4.4) for the contact
region, we obtain the following relation for energy power dissipated in friction:

by = [ givdl, = [ godr..
I‘pl I‘cl

a

The energy power densities per unit length of the contours of the plate (Q = ¢v5) and the insert (@ = §vs)
and the quantity be must be nonnegative.

5. Contact Problems with Allowance for Coulomb Friction. Let Coulomb friction {3] act in the
contact region I'y. The forces on I'y should then satisfy the inequalities p < 0 and |g| < p|p| or fi = pp+¢ <0,
fo=pp—q<0,and F = fifs 2 0, where p is the friction coefficient. In Cartesian coordinates, the region
occupied by p and ¢ in the half-plane p < 0 is bounded by the straight lines f; = 0 and f2 = 0, on which the
vector (p, q) is inclined to I' at minimum possible angles. The friction law does not limit the magnitude of the
vector (p, q). The restrictions imposed on p and ¢ by the friction law are satisfied if the relations p = vyp and
¢ = vq hold. Therefore, they are not included in the boundary conditions below.

The plate edge can slide over the insert with friction at nonzero velocity vs only if the values of the
forces are on one of the boundary lines f; = 0 or f; = 0, the energy dissipation power density is nonnegative
Q = qvs 2 0, and the frictional force acts on each of the contacting bodies in the direction opposite to the
velocity of slippage of this body over the other. The magnitudes of the slip velocity vs can be arbitrary and
independent of the forces p and ¢. At the remaining points in the contact region, at which the slip conditions
do not hold, there is attachment v, = 0.

We arrive at the boundary conditions

A

u—td=u;, v =0, p=7p, ¢=7¢, p<0, F>0 on I,
u—t=u,, f=0, p=7p, ¢=7¢ p<0, Q>0 on IY, (5.1)
p:q:i)::é:(), u—-ﬁ}us on F2.

Here, in view of the rigorous condition p < 0, the condition F = fif2 > 0 on T is equivalent to the two
inequalities fi < 0 and fo < 0, which are linear in the sought functions. Attachment occurs on [} and at
those points on I'] at which @ = 0. At the remaining points on I'/, we have slip @ > 0. As a function f at
each point on I'{, we use the function fi or f2, which are equal to zero at this point. For f = f; = 0 and
g = —up > 0, the inequality @ > 0 can be replaced by v; > 0, and for f = fo =0 and ¢ = up < 0, it can be
replaced by v; < 0.

The partition I' = I'; UT2 and ['y = I'; UT'] is completely determined by the values of the forces p and
q at each current time. The regions '}, I'{, and 'y, the form of the function f (f; or f2) on T'Y, and the values
of the forces p and ¢q on T at each time depend on the history of loading of the structure and attachment and
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slip of the contacting surfaces of the plate and the insert and are found from the solution of the problem. The
conditions for the velocities of tangential displacements in (5.1) are used to trace the loading history.

In contrast to [2], the condition f < 0 on I'f, which implies discontinuous change in f as a function of
time, is ignored in (5.1) and hence, one need not specify 05 = 0. In the numerical solutions given below, as in
2], the case f < 0 on T is not realized.

It should be noted that boundary conditions (5.1) are satisfied not at the actually contacting points,
but at pairs of the points ¢ and 8 for version 1 or ¢ and § for version 2 that are specified according to the
proposed approximate formulation of the problem. Therefore, during solution for both versions, it suffices to
determine the attachment, slip, contact, and contact-free regions on just one contour .

Thus, we have two contact problems for Egs. (1.1) with boundary conditions (2.1), (2.2), and (5.1)
in versions 1 and 2. The solutions of these problems at each time depend on the loading history and the
interaction between the plate and the insert.

Setting € = 0 in (5.1), we arrive at the contact problem with friction for zero clearance. If w increases
monotonically (from zero in the initial undeformed state of the structure), the solution of the problem varies
linearly in w and can be found for the boundary conditions

u=1%, v=9, p=p, gq=4, p<0, F>0 on I,
u=ﬁ'7 f=07 pzﬁv q=éa p<0a Ql?o on Il” (

(] ]
(3]
~——

p:q:ﬁ:(jzo, u}ﬂ on FQ.

Here the values of u, v, p, and ¢ for the plate and %, v, p, and § for the insert are determined at the same point
on I' = [, = I'c in the projections onto the normal and the tangent to I' at the same point. The regions I},
!, and T'; form at the initial time for any arbitrarily small w and remain unchanged as w increases. In the
region I}, by virtue of v, = 0, we have vs = 0 and v = . At each point of I'{, the function f remains the same
(f1 or f2) for any w > 0. With allowance for the linear dependence of ¢ and vs on w, the inequality @ > 0 is

replaced by the condition of nonnegative density of the energy dissipated in friction, i.e., @1 = 0.5¢qvs > 0.
In the absence of friction g = 0, conditions (5.1) lead to the boundary conditions
u—t=ug, p=7p, ¢g=4=0, p<0 on Ty, (53)

p=q=p=4¢=0, u—ut=2us; on [y
determined in versions 1 and 2. The problem for Egs. (1.1) with boundary conditions (2.1), (2.2), and (5.3)
has a unique solution for each version. The strain energy for the plate and the insert ® g, which is treated
as a functional, reaches a minimum value for this solution in the displacement space satisfying the boundary
conditions for displacements in (2.1) and (2.2) and the nonpenetration condition u — % 2> u; everywhere on I'.
The regions I'y and I'; are determined from the solution of the problem.

The problems for plates with an absolutely rigid insert have been solved ignoring friction [4-6] and with
allowance for friction [2]. Hyer and Klang [7] obtained a series solution for an infinite plate with a deformable
insert in the presence of a clearance and friction with the difference of displacements of the hole edge and the
insert contour specified in the attachment region ignoring the history of interaction between the plate and
the insert.

6. Algorithm of Solution of Contact Problems. Solutions are found for monotonically increasing
displacement w of the right side of the plate using the following algorithm for any version of the boundary
conditions considered.

On T, we introduce a new variable — the coordinate 7. It has the form n = 1 — /= in version 1 and
n =1 -6/ in version 2 and increases along I' in the clockwise direction (0 < 7 < 1) (Fig. 1). We assume
that, at any time, the regions I'}, I'}, and I'; on T occupy the segments 0 <n < b, b<n <l,and I<n < |,
respectively, and the contact region I'y = I} UTY occupies the segment 0 < n < I. At all points on I'{, the
same function f (fi or f2) is assumed to be zero and, hence, the frictional forces are assumed to act along ']
in the same direction. The values of b and [ and the form of the function f (fi or f2), which is equal to zero
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on I'], depend on the displacement w, the clearance ¢, the friction coefficient g, the ratio of the stiffnesses of
the plate and the insert, and the version 1 or 2 of boundary conditions.

In the calculations, the length [ of the contact region is increased by steps during loading. In each step
from 7 to T 4+ AT, the value of [ is assigned at the end of the step at time 7 + Ar. The slip velocities at the
end of the step are determined from the formula v; = (vs — v57)/A7 (the values at the beginning of the step
are denoted by the subscript 7; at the initial time, ! = 0 and vs = 0 everywhere on T').

Discarding the inequalities in (5.1) and satisfying the condition o5 = 0 on I'}, we arrive at the boundary
conditions

u—U=1us;, V—0=vg, PpP=7p, =79 for 0<n<b

u—ﬂzus, f=07 ﬁ=7pa é=7q for b<77<la (61)
Here the differences of tangential displacements vy, found in the previous time step are specified on the
segment 0 < 7 < b. Solution of the problem for Eqgs. (1.1) subject to boundary conditions (2.1), (2.2), and
(6.1) (referred to as problem A) gives the state of equilibrium of the structure at the end of the step with a
specified contact region.

We introduce two auxiliary problems Al and A2, which differ from problem A in that the boundary
conditions specify

u=1, v=79 in Al, u——ﬁ:c"lus, v—17=clug in A2 for 0Ky <h,
u=1, f=0in Al, u—d=clu,, f=01in A2 for b<n<l,
uy=1, wr=01in Al, uy=uy=0 in A2 for =1Ly, 0<zy3< H.

The solution of the contact problem without a clearance for Egs. (1.1) and boundary conditions (2.1), (2.2),
and (5.2) is determined as the solution of problem Al for ¢ = 0, w = 1, and values of b, [, and f such that
the inequalities in (5.2) hold.

The plate and the insert are divided into Lagrangian finite elements (quadrilateral, nine-node, and
isoparametric) (8], as shown (for € = 0) in Fig. 1. The sets of nodes on I', and I'c are composed of pairs of
points (¢ and 0 in version 1 or ¢ and 0 in version 2) at which the values of the sought functions are related
by the specified boundary conditions. In other respects, the algorithm is similar to the one given in [2] for
problems with an absolutely. rigid insert. The systems of finite-element equations for problems Al and A2
are formulated using the virtual displacement principle. These systems have the same unsymmetrical matrix
of coeflicients of the unknown variables (components of nodal displacements) and are solved by the Gauss
method of elimination [8, 9] with allowance for the band nature of this matrix and the fact that most of its
coefficients are symmetric about the principal diagonal. We seek a solution of problem A as a sum of solutions
of problems Al and A2 with the coefficients w and ¢. Using the Boussinesq principle [3, 10], we determine w
from the condition of zero normal force p at the extreme right node in the contact region n = l,. Iterations
are used to determine the location of the extreme right node in the attachment region n = b, at which the
force function f, which is equal to zero in the slip region, vanishes at this node (the values b, and I, are used
as the lengths of the attachment and contact regions b = b, and [ = [,). As a result, the desired solution of
the contact problem is determined, and inequalities (5.1) hold. The conditions v — 9 = vsr and f = 0 are
satisfied at the node n = b, and the conditions f = 0 and p = 0 are satisfied at the node = .. In this sense,
there is continuous transition along I' from one set of boundary conditions to the other.

7. Calculation Results. We convert to dimensionless quantities. For this, we multiply z;, z2, r, and
p by the normalizing factor R™1, the displacements and the clearance ¢ by Ly!, the strains by w = RLEI,
the stresses and the forces p and ¢ by wE{'l, and the strain energies of the plate ®g; and the insert ® g9,
the energy ® dissipated in friction, and the work ® of the tensile force by EflLaz (Lo is a constant having
the dimension of length). The previous notation is used for the dimensionless quantities. In this case, R = 1,
Ri=1—-¢, Ry =025 H=1L; =235, Ly =5, and ¢ = we. The Poisson’s ratio is v; = vs = 0.3.
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Fig. 2. Hoop stress o, (curve 1) and normal p and tangential ¢q forces (curves 2 and 3)
on the hole contour in the plate for the solution of the problem given in Fig. 1.

Fig. 3. Hoop stress g9 on the insert contour I'c for the solution of the problem given in
Figs. 1 and 2.

The dimensionless equations and the boundary conditions include the two parameters c and ¢, related
to the magnitude of the clearance. From specified ¢ and &, we determine w = ¢£~! and convert from the
dimensionless sought functions to dimensional quantities. In the absence of a clearance (¢ = ¢ = 0), the
solution is linearly proportional to w, and, hence, we set w = 1. Reverting to the dimensional quantities and
specifying the dimensional parameters w and R, we have Ly = w and w = RLj ! In a similar manner, we can
convert from the dimensionless sought functions to dimensional functions.

For the contact problem with friction in the absence of a clearance for Egs. (1.1) and boundary
conditions (2.1), (2.2), and (5.2), we examine a solution that was obtained for ¢ = 0, g = 0.3, £} = E»,
w=1,1=0.4807, and b = 0.1485 (7! = 86.5° and 7b = 26.7°). The finite-element grids for the plate and the
insert (Lagrangian isoparametric nine-node finite elements are used) in the initial and deformed states are
shown in Fig. 1. The coordinates of the nodes X; in the deformed state are related to their initial coordinates
z; by the formula X; = z; + Bu; (¢ = 1 and 2), where the coefficient 3 is chosen so that, the product of 3
by the maximum magnitude of the components of the global vector of the sought unknowns — the nodal
displacements — is equal to unity. Conversion to the dimensionless displacements and multiplication of them
by 3 result in overestimated strains of the plate and the insert (Fig. 1).

The tensile force P = 0.195 and the strain energies of the plate and the insert ®£; = 0.07504 and
®py = 0.01996 exceed the ones obtained in the solution in the absence of friction, in which P = 0.184,
®r =0.07322, &g, = 0.01874, | = 0.4708, and b = 0. As the stiffness of the insert increases for u = 0.3, the
energy dissipated in friction increases from @ = 0.0025 in the solution considered to ®; = 0.0053 in the case
of an absolutely rigid insert with ®g; = 0.1183.

Figure 2 shows p, ¢, and o, in the plate and Fig. 3 shows 544 in the insert on I' as functions of 7. We
have p = ¢ = 0 for [ < n < 1. The maximum value o,, = 05, is reached on the free part of [ in the vicinity
of the point = [, and the maximum absolute value of p is reached at the interior point of the contact region.
In contrast to the case of an absolutely rigid insert [2], we have o,, > 0 in the neighborhood of the point
n = 0. Because of friction, the values of o7, and the stress-concentration coefficient K = H P'la:w increase
from 0.3282 and 4.460, respectively, for u = 0 to 0.3873 and 4.965, respectively, for 4 = 0.3.

As Ey/E; decreases for € = 0, p = 0.3, and w = 1, the values of P, ®g, and (®7/®) and the maxima
04, and dgg on I' decrease, whereas the values of | and b increase. We have [ = 0.4748 and b = 0.02366 for
E, = 16F and { = 0.4868 and b = 0.2054 for E; = 0.25E;.

A solution of the contact problem in the presence of a clearance and friction for Egs. (1.1) with
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Fig. 4. Lengths of the contact region ! (curve 1) and the attachment region b (curve 2)
versus the displacement w of the right side of the plate in the problem with boundary

conditions in version 2 in the presence of a clearance and friction (¢ = 0.05, ¢ = 0.3, and
E; = E,).

Fig. 5. Hoop stress oy, (curve 1) and normal p and tangential q forces (curves 2 and 3)
on the hole contour in the plate in the solution of the problem given in Fig. 4 for [ = 0.25,
b=0.1824, and w = 1.1062.

TABLE 2

Solution | u l b P-10% | &g, - 10° | &g, - 108 oy K
U®W [ 0.3]0.1455 | 0.1309 | 4.651 6.411 1.833 | 0.1017 | 5.468
U® 03] 015 |0.1339 ] 4.694 | 6.481 1.836 | 0.1029 | 5.483
Uu® 0 01499 0 4.679 | 6.427 1.874 | 0.0994 | 5.313

boundary conditions (2.1), (2.2), and (5.1) in version 1 was obtained for ¢ = 1, ¢ = 0.05, ¢ = 0.3, and
E; = E, in 16 steps variable in { ({ = 0.05-0.45). For [ = 0.05, zero differences of tangential displacements
vs = 0 were assigned in the attachment region. Curves 1 and 2 in Fig. 4 show the parameters [ and b as
functions of w. In contrast to the case of an absolutely rigid insert [2], the signs of ¢ and 5 in the slip region
do not change during loading and the plate edge slides over the insert contour in the clockwise direction. As w
increases, the length of the attachment region reaches a maximum b = 0.1869 ({ = 0.225) and w = 0.8445 and
then decreases (curve 2 in Fig. 4) but not as rapidly as in the solution for an absolutely rigid insert [2]. The
dissipated energy @ is negligibly small for [ < 0.225, and then it sharply increases but remains well below
the strain energies of the plate and the insert. For | = 0.45, it is approximately 1.6% of ®f = ® g + @ go.

Figure 5 shows p, ¢, and o, on I'p for [ = 0.25, b = 0.1824, w = 1.1062, and P = 0.1559. It can be
seen that g, < 0 and oy, < 0 in the neighborhood of the point n = 0.

For the same value of w, the difference between the solutions of the problems for Egs. (1.1) and
boundary conditions (2.1}, (2.2), and (5.1) of versions 1 and 2 (the corresponding solution vectors are denoted
by U and U(z), respectively) is small. For small values of w, these solutions differ insignificantly from
solutions ignoring friction. Table 2 lists the values of p, [, b, P, ®f;, and $ gy, the maximum hoop stress

at the edge of the hole o7, and the stress-concentration coefficient K = HP—IO'(:;(', calculated for ¢ = 1,

e =0.05, E; = F3, and w = 0.3838 in the solutions UY and U® for ¢ = 0.3 and in the solution U® of the
problem for Egs. (1.1) with boundary conditions (2.1), (2.2), and (5.3) in version 2 for p = 0. The boundary
conditions in version 1 are less restrictive for the plate and the insert than the boundary conditions in version

2: the values of [, b, P, @y, ®p2, 0, and K in UM are lower than those in U?).
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