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S O L U T I O N  O F  A C O N T A C T  P R O B L E M  F O R  A P L A T E  

W I T H  A D E F O R M A B L E  I N S E R T  

V. N. Solodovnikov UDC 539.3.01 

Contact problems with friction are solved for a rectangular plate with a circular hole into which a 
ring plate (insert) is placed with a small clearance. Two versions of contact boundary conditions 
are formulated. According to the proposed approximate formulation of the problem, the boundary 
conditions in both versions are satisfied not at the actual contact points but at specified pairs 
of points. Therefore, it is sufficient to determine attachment, slip, contact, and contact-free 
regions on just one of the contacting contours. The finite-element method and the Boussinesq 
principle are used to solve the problem. One of the versions of boundary conditions, compared 
to the other, gives smaller values for the strain energies of the plate and insert, the stress- 
concentration coefficient, and the lengths of attachment and contact regions. 

1. Bas i c  E q u a t i o n s .  The equations of equilibrium, the strain-displacement relations, and Hooke's 
law are wri t ten in the form [1] 

a11,1 + o'12,2 = 0, o'12,1 + o'22,2 = 0, eli = u1,1 = E- l (o ' l l  - uo'22). (1.1) 

e22 = U2,2 : E - 1 ( 0 " 2 2  - V O ' l l ) ,  e l 2  = 0,5(721,2 -t- u2 ,1 )  = (1 + v)E-lo'12. 

ttere E is the Young's modulus, v is the Poisson's ratio, ui are the displacements, eij are the strains, and 
o'ij are the plane stresses in the Cartesian coordinates xi (i, j = 1 and 2); subscripts 1 and 2 after a comma 
denote partial differentiation with respect to Xl and x2, respectively. The strain energy has the form 

f E [e21+2uelle22+e~2+2(l_u)e22]dxldx2" q~E = 2(1 -- v 2) 
f2 

It is assumed that the thickness of the plates is constant and, without loss in generality, equal to unity. 
Integration is performed over the region f~ occupied by the plate. For the rectangular plate, we have E = E1 
and v = vl and for the ring plate, E = E2 and v = v2. 

2. B o u n d a r y  C o n d i t i o n s  O u t s i d e  t h e  C o n t a c t  Reg ion .  We consider a rectangular plate of width 
2H and length L = L1 + L2 with a circular hole of radius R, which will be referred to as a "plate," and a 
ring plate (insert) with outside and inside radii R1 = R - c and R2, respectively, whose center is at the point 
with the Cartesian coordinates ( - c ,  0), c = eR, where e is a small dimensionless clearance parameter (e > 0). 
In view of symmetry,  the solution is sought only for the upper halves of the plate and the insert [whose 
undeformed states with zero clearance (e = 0) are shown in Fig. la] subject to the boundary conditions 

a l l  = a 1 2 = 0  at xl = - L 1 ,  0~<x2~<H, 

H, -L1  ~< xl ~ L2, 
u 2 = 0 ,  o .12=0 at x e =  (2.1) 

0, -L1  ~<xl ~<-R,  R~<x l  ~< L2, 

Ul = w ,  u 2 = 0  at xl = L 2 ,  0~<x2 ~ H; 
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Fig. 1. Finite-element grids for the plate and the insert in the 
initial (a) and deformed (b) states for the contact problem 
without a clearance (e = 0, /z = 0.3, E1 = E2, w = 1, l - 
0.4807, and b = 0.1485). 

for the insert, 

u l = u 2 = 0  at p = R 2 ,  0~<0~<~', (2.2) 

U2 : 0, O'12 ----- 0 for R2 ~ p ~< R1, 0 = 0 and 0 = 7r. 

The following two polar coordinate systems are used: (r, 9)  (xl = r cos ~ and x2 = r sin ~) and (p, 0) (xl = 
p cos 0 - c and x2 = p sin 0). 

The tensile force P applied on the right side of the plate and the work @ done by this force are given 
by the formulas 

H r 

P=/0"11dx2,  ~ = / P ( v d r  for x l = L 2  . 
0 0 

The dot denotes differentiation with respect to the loading parameter, which is called t ime 7. Below, we also 
formulate boundary conditions on the contour of the insert Fc (p = R1 and 0 ~< 0 ~< 7r) and on the hole 
contour Fp (r = R and 0 ~< ~ <~ ~r). 

3. W o r k  o f  F r i c t iona l  F o r c e s  in D i s p l a c e m e n t  Va r i a t i ons .  According to the virtual displacement 
principle, for any displacement variations ~ui satisfying the boundary conditions for the displacements (2.1) 
and (2.2) and for any associated strain variations geij the stress works in the plate and the insert is equal to 
the work of the forces acting on them: 

~5E1 = 549 -- ~ F 1 ,  

ttere 

~E2 = ~#r2. (3.1) 

~ E1 = r / ~ dxl dx2, ~P E2 :- / o'ij~eii dz l dx2, 

P6w, dO. 
Fp Fc 

Summation is performed over repeated subscripts i, j = 1 and 2 and integration is performed over the regions 
f~l and f~2 occupied by the plate and the insert, respectively; p and lb are the vectors of the forces acting 
on Fp and Fc from the side opposite to the center of the insert; ~u and 6/t are the vectors of displacement 
variations (the vectors on Fc are denoted by a hat). 
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For the entire s tructure comprising the plate and the insert, we have 

(~(I) : or -Jr- ~(I)f, (~(I)E = ~i4)E1 + ~q)E2, (3.2) 

i.e., ~(I) is the sum of the stress work and the work of the frictional forces acting in the contact zone with 
displacement variations/i(I) I (taken with the minus sign). Without  giving the expression for ( ~ f ,  we subst i tu te  
6(I)E1 and (~4PE2 from (3.1) into (3.2) to obtain the relation 

Fp Fc 

which holds for any boundary conditions on the contours of the plate and the insert outside Fp and Fc. Below 
it is used to formulate  the boundary conditions on Fp and Fc. 

4. I n t e r a c t i o n  B e t w e e n  t h e  P l a t e  a n d  t h e  I n s e r t .  Equating the Cartesian coordinates of any 
points ~ E Fp and 0 E Fc that  come in contact upon loading of the plate, we have 

R c o s ~  + Ul = R1 c o s 0 -  c +  ill ,  R s i n c 2 + u 2 = R l s i n O + f i ~ ,  (4.1) 

where the displacement vectors u = (ul ,u2) and /~ = (~1,fi2) are determined at the points ~ and ~}, 
respectively, and the displacements and forces specified on Fc are denoted by a hat. We now formulate  
two versions of boundary conditions on Fp and Fr 

V e r s i o n  1. We consider the point 0 E F~ which is closest to the point ~ and for which 

c o s 0  = p~-l(cos ~ + r sin0 = p~-I s i n ~ ,  Ps = (1 -t- 2e c o s ~  -b r 1/2. 

We expand the right sides of (4.1) in Taylor series at the point 0. Neg)ecting products of derivatives of the 
displacements fil and fi2 by (0 - 0) and terms containing powers of (0 - 0) higher than the first power, we 
arrive at the approximate  relations 

R cos ~ -1- Ul ---= R1 [cos 0 - (0 - 0) sin 01 - c + ill, (4.2) 

R sin ~ + u2 = RI [sin 0 + (0 - 0) cos 0] + fi2. 

Here, in contras t  to (4.1), the values of fil and u2 are specified at the point 0. We find the projections of the 
displacement vectors u o = u .  n o ,  uo = u �9 1~, @ = i ,  �9 n c ,  and fi0 = ~i �9 lc onto the normal n c  = (cos 0, sin 0) 
and the tangent  lc = ( - s i n  0, cos 0) to Fc at the point 0. From (4.2) we obtain the relations u o = ups + rio 

and uo = UOs + rio, in which the quantities Ups = R1 - p s R  and uos = R l ( O  - O) must be of the order of the 
displacements themselves. 

The  difference of the normal displacements Uos is equal to the distance between the points ~ and 0 
taken with the minus sign. This difference is a known function of ~ (or 0) that  is independent of time. To 
eliminate penet ra t ion  of Fp and Fc into one another outside the contact region during deformation, we require 
that the inequali ty up - rio ) ups hold for each pair of the points ~ and 0. The  values of ups do not coincide 
with the values of the displacements u o = upc = , - c p 2 1  (1 + cos : )  specified in the case of an absolutely rigid 
insert [2]. We have uo~ ~ uoc <~ O, and the difference (upc - ups) is small (a quanti ty of order c2). To ensure 
continuous transi t ion to the contact conditions in [2] as the stiffness of the insert increases without bound,  
we make the  nonpenet ra t ion  condition stronger by set t ing ups = u w .  

The  difference of the tangential displacements uos is equal, with one-place accuracy, to the length of 
the arc on Fc between the points 0 and 0. The quant i ty  uos takes into account possible slippage of Fp and 
Fc about one another  and changes in pairs of contacting points. Calculating uos,  we approximately determine 
the coordinate of the point that  is in contact with the point c 2 by the formula 0 = 0 + R l l U O s  . In the presence 
of friction, the  quant i ty  uos depends at each time on the history of loading of the structure and it is t reated,  
together with displacements,  as the sought function of ~ (or 0) and time r.  In the contact region, the partial 

derivative i~Os with respect to ~" is the slip velocity. If iLos = 0, then 0 = 0, the pair of contacting points does 
not change, and  a t tachment  occurs. 

We denote  the contact and contact-free regions on Fp by rpl and Fp2, respectively. The regions on 
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TABLE 

Version 

1 

u v p q s v P gt ~ts Vs 7 F1 F2 F 

Up uO pp PO up ~tO Pp PO Ups ttOs 3'1 Fpl Fp2 Fp 

F~ 

Fc formed by the points closest to the corresponding points on Fpl and Fp2 are denoted by Fcl and Fc2, 
respectively (Fp = Fpl U I'p2 and Fc = Fcl U Fc2). We determine the projections of the force vectors pp = p .  rtc 

and Po = P" lc at the point c2 and Do = l b. n~ and `rio = lb" l~ at the point 0 onto the normal and the tangent 
to F~. The quantities Dp = &po, Do = &p0, and &00 are the stress components on the contour of the insert 
Fc in the polar coordinates (p, 0). Let, with variation in displacements, a t tachment  occur everywhere in the 
contact region: 6Up = 6tip and 6ua = 6fie. Then, the work due to friction is equal to zero and from (3.3), with 
allowance for the relations R dc 2 = "~x R1 dO and 3'1 = Ps2(1 - e ) - l (1  + e cos ~) -1 ,  we obtain 

6r  = o = f - D.)6,,. + (3"lpo - i o)6uolRl O + f [3 ' l (po6u ,  + po uo) - + Do6 ,o)lR1 dO. 

Fcl Fc2 

In these integrals we set the coefficients of arbitrary variations in displacements equal to zero. Bearing in mind 
that in the contact region, the normal forces on F v and Fc are negative because of compression, we arrive at 
the boundary conditions 

u o  - -  rio = U p s ,  UO - -  rio = UOs, Pp  = 3" lPp ,  PO = 3"IPO, PO < 0 on Fpl, 
(4.3) 

Pp = Po = po = Do = O, U p -  fio >l up8 on Fp2. 

Here the values of up, uo, pp, and Po are determined at the point ~ and the values of tip, ~t0, 150, and P0 are 
determined at the point 0; for brevity, the regions on Fc are not indicated; Up8 = uoc = -cp-21(1 + cos c2). 
By virtue of (4.3), we have lb = 71P on Fpl and lb = p = O on Fp2. The coefficient 3'1 takes into account 
the difference in dimensions between the contact sites at the edges of the plate and the insert and the angle 
between these sites in the initial undeformed state. 

Vers ion  2. We now expand the left sides of equalities (4.1) in a Taylor series at the point ~ E Fp 
which is closest to 0 and for which 

cos~ = rs l [ (1  - e ) c o s O -  e], s in~ = rs l (1  - e)sinO, 

r~ -- [1 - 2e(1 - e)(1 + cos 0)t t/2. 

Further, the boundary conditions are formulated similarly to version 1 but for the following projections of the 
displacement and force vectors onto the normal n p =  (cos~, sin ~) and the tangent  lp = ( - s i n # ,  cos~) to 
Fp: u~ = u . n p ,  u~, = u . l p ,  p,. = p . n p ,  and p~ = p . l p  at the point ~ and fi~ = ~i- rtp, fi~ = / t - l p ,  ib~ = l b . n p ,  

and i@ = P" lp at the point t~. The quantities p~ = o>~, p~, = a~,, and er~,~ are the stress components on Fp 
in the plate in the polar coordinates (r, ~v). We obtain the equalities u, = u ~  + fi~ and u~, = u ~  + fi~,, in 
which u~ = R(r~ - t) and u~,~ = R(~ - c2). To ensure continuous transition to the  contact conditions of ['2.] 
as the stiffness of the insert increases without bound, we make the nonpenetration condition u~ - fi~ /> u~s 

stronger by setting u~ = U~c = - c (1  + cos~). We determine the contact region F~I and the contact-free 
region Fc2 on Fc and the regions Fpl and Fp2 on Fp formed by the points closest to the corresponding points 
from F~I and Fc2. In this case, the regions Fpl, Fp2, Fcl, and Fc2 can differ from those in version 1. We have 
Fp = Fpl El Fp2 and Fc = Fcl U Fc2. The force vectors in the contact region are related by the formula :/5 = 3'2P, 

w h e r e  3'2 =  7211 - + cos  0)]. 
We use the notation given in the first row of Table 1, which is common for both versions, for the 

quantities and regions listed in the last two rows of Table 1. Using the common notation, we write the 
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boundary conditions for versions 1 and 2 in the form 

u - - ~ = u s ,  v--~) = v s ,  i ~ = T p ,  0 = T q ,  p < 0  on F1, 
(4.4) 

p = q = / 5 = ~ = 0 ,  u - f i > ~ u s  o n  I~2  . 

In version 1, these conditions coincide with (4.3). For the contact region, from p < 0 it follows that ib < 0 
and the nonpenetration condition u - fi ) us holds everywhere on r = r l  U ['2. Boundary conditions (4.4) 
are formulated irrespective of the materials of the plate and insert, the ratio of their stiffnesses, and the 
properties of the contacting surfaces. Below, they are supplemented by boundary conditions that take friction 
into account. 

We now use relation (3.3) not for displacement variations but for their velocities. Replacing 6~P I by ~)I 
and integrating over re, we obtain 

~f  =/[.,/(pit + qi~) - (bfi + ~b)] dry. 
Fc 

Next, using the equalities ib = 7P, 0 = 7q, it = fi, and 7) - ~ = 75~, which follow from (4.4) for the contact 
region, we obtain the following relation for energy power dissipated in friction: 

rpl tel 

The energy power densities per unit length of the contours of the plate (Q = qT)~) and the insert (Q = @s) 
and the quantity ~ I  must be nonnegative. 

5. C o n t a c t  P r o b l e m s  w i t h  A l l o w a n c e  for  C o u l o m b  Fr ic t ion .  Let Coulomb friction [3] act in the 
contact region 1"1. The forces on 1"i should then satisfy the inequalities p < 0 and Iql ~< #[Pl or f l  = #P+q <~ O, 
f2 =/~p - q <~ 0, and F = f l f2 ) O, where # is the friction coefficient. In Cartesian coordinates, the region 
occupied by p and q in the half-plane p < 0 is bounded by the straight lines f l  = 0 and f2 = 0, on which the 
vector (p, q) is inclined to [" at minimum possible angles. The friction law does not limit the magnitude of the 
vector (p, q). The restrictions imposed on t3 and 0 by the friction law are satisfied if the relations/5 = -),p and 
0 = 3'q hold. Therefore, they are not included in the boundary conditions below. 

The plate edge can slide over the insert with friction at nonzero velocity vs only if the values of the 
forces are on one of the boundary lines f l  = 0 or f2 = 0, the energy dissipation power density is nonnegative 
Q = qO~ >/0, and the frictional force acts on each of the contacting bodies in the direction opposite to the 
velocity of slippage of this body over the other. The magnitudes of the slip velocity 7)~ can be arbitrary and 
independent of the forces p and q. At the remaining points in the contact region, at which the slip conditions 
do not hold, there is at tachment ~)s = 0. 

We arrive at the boundary conditions 

t t - -  ~ ~ Us, 

~)s = 0 ,  /5=3'P, t l=3 'q ,  p < 0 ,  F > 0  on F], 

f - 0 ,  /5=') 'p, q = T q ,  p < 0 ,  Q ) 0  on F'I', 

p = q = i b = 0 = 0 ,  u - ~ ) U s  on F2. 

(5.1) 

Here, in view of the rigorous condition p < 0, the condition F = f l f2 > 0 on F] is equivalent to the two 
inequalities f l  < 0 and f2 < 0, which are linear in the sought functions. Attachment occurs on F~ and at 
those points on F~ ~ at which Q = 0. At the remaining points on P1 ~, we have slip Q > 0. As a function f at 
each point on I'] ~, we use the function fl  or f2, which are equal to zero at this point. For f = f l  = 0 and 
q = - # p  > 0, the inequality Q ) 0 can be replaced by ~)s/> 0, and for f = f2 = 0 and q = #p < 0, it can be 
replaced by ~)s ~< 0. 

The partition F = Fa U F2 and Fa = F~ U Fg is completely determined by the values of the forces p and 
q at each current time. The regions r ] ,  F'~, and P2, the form of the function f (f l  or f2) on Fg, and the values 
of the forces p and q on F at each time depend on the history of loading of the structure and attachment and 
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slip of the contact ing surfaces of the plate and the insert and are found from the solution of the problem. The 
conditions for the velocities of tangential displacements in (5.1) are used to trace the loadin.g history. 

In contrast  to [2], the  condition ] < 0 on F~, which implies discontinuous change in f as a function of 
time, is ignored in (5.1) and hence, one need not specify ~)s = 0. In the numerical solutions given below, as in 
[2], the case f < 0 on F~ is not  realized. 

It should be noted tha t  boundary conditions (5.1) are satisfied not at the actually contact ing points, 
but  at pairs of the  points ~2 and 0 for version 1 or ~ and ~ for version 2 that  are specified according to the 
proposed approximate  formulat ion of the problem. Therefore, during solution for both versions, it suffices to 
determine the a t t achment ,  slip, contact, and contact-free regions on just  one contour F. 

Thus, we have two contact  problems for Eqs. (1.1) with boundary conditions (2.1), (2.2), and (5.1) 
in versions 1 and 2. The  solutions of these problems at each t ime depend on the loading history and the 
interaction between the pla te  and the insert. 

Setting ~ = 0 in (5.1), we arrive at the contact problem with friction for zero clearance. If w increases 
monotonically (from zero in the  initial undeformed state of the structure),  the solution of the problem varies 
linearly in w and can be found for the boundary conditions 

u = ~ t ,  v = ~ ,  p = ~ ,  q = g h  p < O ,  F > O  on F'l, 

u = C t ,  f = 0 ,  p = / ~ ,  q = q ,  p < 0 ,  Q l ~ > 0  on F'[, (5.2) 

p = q = i 5 = ~ = 0 ,  u>/ t2  on F2. 

Here the values of u, v, p, and q for the plate and fi, fi, i6, and ~ for the insert are determined at the same point 
on F = Fp = Fc in the project ions onto the normal and the tangent to F at the same point. The  regions F], 
F'[, and F2 form at the initial t ime for any arbitrarily small w and remain unchanged as w increases. In the 
region F], by vir tue of ~)s = 0, we have Vs = 0 and v = ft. At each point of F] ~, the function f remains the same 
(fl  or f2) for any w > 0. Wi th  allowance for the linear dependence of q and Vs on w, the inequality Q >/0 is 
replaced by the condit ion of nonnegative density of the energy dissipated in friction, i.e., Q1 = 0.hqvs >~ O. 

In the absence of friction # = 0, conditions (5.1) lead to the boundary conditions 

u - ~ = Us, P = TP, q = (t = 0 ,  p < 0  on F1, (5.3) 

p = q = i b = 0 = 0  , u - f i ) u ~  on F2, 

determined in versions 1 and 2. The problem for Eqs. (1.1) with boundary conditions (2.1), (2.2), and (5.3) 
has a unique solution for each version. The  strain energy for the plate and the insert CE, which is treated 
as a functional, reaches a m in imum value for this solution in the displacement space satisfying the boundary 
conditions for displacements in (2.1) and (2.2) and the nonpenetrat ion condition u -  it >~ Us everywhere on F. 
The regions F1 and F2 are determined from the solution of the problem. 

The problems for plates with an absolutely rigid insert have been solved ignoring friction [4-6] and with 
allowance for friction [2]. Hyer and Klang [7] obtained a series solution for an infinite plate with a deformable 
insert in the presence of a clearance and friction with the difference of displacements of the hole edge and the 
insert contour specified in the  a t tachment  region ignoring the history of interaction between the plate and 
the insert. 

6. A l g o r i t h m  of  S o l u t i o n  of  C o n t a c t  P r o b l e m s .  Solutions are found for monotonically increasing 
displacement w of the right side of the plate using the following algori thm for any version of the boundary 
conditions considered. 

On F, we introduce a new variable - -  the coordinate r/. It has the form q = 1 - ~/a" in version 1 and 
= 1 - 0/~r in version 2 and increases along F in the clockwise direction (0 ~< 7/ ~< 1) (Fig. 1). We assume 

that ,  at any t ime, the regions F], F~, and F2 on F occupy the segments 0 ~< 77 < b, b ~< 7/< l, and l ~< 77 ~< I, 
respectively, and the contact  region F1 = F] t.J F~ occupies the segment 0 ~< 71 < I. At all points on F]', the 
same function f ( f l  or f2) is assumed to be zero and, hence, the frictional forces are assumed to act along F~ 
in the same direction. The  values of b and l and the form of the function f (f l  or ]'2), which is equal to zero 
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on F~, depend on the displacement w, the clearance c, the friction coefficient #, the ratio of the stiffnesses of 
the plate and the insert, and the version 1 or 2 of boundary conditions. 

In the calculations, the length I of the contact region is increased by steps during loading. In each step 
from T to ~" + Av, the value of l is assigned at the end of the step at time v + Av. The slip velocities at the 
end of the step are determined from the formula vs = (vs - v s r ) / A v  (the values at the beginning of the step 
are denoted by the subscript r; at the initial time, l -- 0 and vs = 0 everywhere on F). 

Discarding the inequalities in (5.1) and satisfying the condition 9s = 0 on F~, we arrive at the boundary 
conditions 

u - 5 = u ~ ,  v - 9 = v ~ r ,  25=Tp, ( l = T q  for 0~<77<b,  

u - f i - - - u ~ ,  f = O ,  f~='TP, (7='7q for b < ~ o < l ,  (6.1) 

p = q = f ~ = O = O  for l ~ < ~ < l .  

Here the differences of tangential displacements vsr found in the previous time step are specified on the 
segment 0 ~< ,7 < b. Solution of the problem for Eqs. (1.1) subject to boundary conditions (2.1), (2.2), and 
(6.1) (referred to as problem A) gives the state of equilibrium of the structure at the end of the step with a 
specified contact region. 

We introduce two auxiliary problems A1 and A2, which differ from problem A in that  the boundary 
conditions specify 

u=~2,  v = 9  in A1, u - ~ = c - l u ~ ,  v - ~ = c - l v ~ ,  in A2 for 0 < ~ , 7 < b ,  

u = fi, f = 0 in A1, u - ~ = c - l u s ,  f = 0 in A2 for b ~< 77 < l, 

u 1 = 1 ,  u 2 = 0  in A1, ul = u 2 = 0  in A2 for x l = L 2 ,  0 ~ < x 2 ~  H. 

The solution of the contact problem without a clearance for Eqs. (1.1) and boundary conditions (2.1), (2.2), 
and (5.2) is determined as the solution of problem A1 for e = 0, w = 1, and values of b, l, and f such that 
the inequalities in (5.2) hold. 

The plate and the insert are divided into Lagrangian finite elements (quadrilateral, nine-node, and 
isoparamctric) [8], as shown (for e = 0) in Fig. 1. The sets of nodes on Fp and Fc are composed of pairs of 

points (~ and 0 in version 1 or ~b and t~ in version 2) at which the values of the sought functions are related 
by the specified boundary conditions. In other respects, the algorithm is similar to the one given in [2] for 
problems with an absolutely, rigid insert. The systems of finite-element equations for problems A1 and A2 
are formulated using the virtual displacement principle. These systems have the same unsymmetrical  matrix 
of coefficients of the unknown variables (components of nodal displacements) and are solved by the Gauss 
method of elimination [8, 9] with allowance for the band nature of this matrix and the fact that most of its 
coefficients are symmetric about the principal diagonal. We seek a solution of problem A as a sum of solutions 
of problems A1 and A2 with the coefficients w and c. Using the Boussinesq principle [3, 10], we determine w 
from the condition of zero normal force p at the extreme right node in the contact region 77 = l,. Iterations 
are used to determine the location of the extreme right node in the at tachment region 7/ =- b, at which the 
force function f ,  which is equal to zero in the slip region, vanishes at this node (the values b, and l, are used 
as the lengths of the a t tachment  and contact regions b = b, and l = l,). As a result, the desired solution of 
the contact problem is determined, and inequalities (5.1) hold. The conditions v - 5 = Vs~- and f = 0 are 
satisfied at the node ,1 = b,, and the conditions f = 0 and p -- 0 are satisfied at the node 7/= l,. In this sense, 
there is continuous transition along F from one set of boundary conditions to the other. 

7. C a l c u l a t i o n  R e s u l t s .  We convert to dimensionless quantities. For this, we multiply xl, x2, r, and 
p by the normalizing factor R -1, the displacements and the clearance c by Lo 1, the strains by w = R L o  1, 
the stresses and the forces p and q by w E ~  1, and the strain energies of the plate (I)E1 and the insert (I)E2 , 

the energy (I) I dissipated in friction, and the work (I) of the tensile force by E ~ I L o  2 (Lo is a constant having 
the dimension of length). The previous notation is used for the dimensionless quantities. In this case, R = 1, 
R1 = 1 - e, R2 = 0.25, H = L1 = 2.5, L2 -- 5, and c = we. The Poisson's ratio is ul = v2 = 0.3. 
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Fig. 2. Hoop stress 6%,~ (curve 1) and normal p and tangential q forces (curves 2 and 3) 
on the hole contour in the plate for the solution of the problem given in Fig. 1. 

Fig. 3. Hoop stress &ee on the insert contour Fc for the solution of the problem given in 
Figs. 1 and 2. 

The dimensionless equations and the boundary conditions include the two parameters c and r related 
to the magnitude of the clearance. From specified c and r we determine w = cr -1 and convert from the 
dimensionless sought functions to dimensional quantities. In the absence of a clearance (c = e = 0), the 
solution is linearly proportional to w, and, hence, we set w = 1. Reverting to the dimensional quantities and 
specifying the dimensional parameters  w and R, we have L0 = w and w = RLo 1. In a similar manner, we can 
convert from the dimensionless sought functions to dimensional functions. 

For the contact problem with friction in the absence of a clearance for Eqs. (1.1) and boundary 
conditions (2.1), (2.2), and (5.2), we examine a solution that  was obtained for ~ = 0, # = 0.3, E1 = E2, 
w = 1, l = 0.4807, and b = 0.1485 (~rl = 86.5 ~ and ~rb = 26.7~ The finite-element grids for the plate and the 
insert (Lagrangian isoparametric nine-node finite elements are used) in the initial and deformed states are 
shown in Fig. 1. The coordinates of the nodes Xi in the deformed state  are related to their initial coordinates 
xi by the formula Xi = xi + 13ui (i = 1 and 2), where the coefficient/3 is chosen so that, the product of/3 
by the maximum magnitude of the components of the global vector of the sought unknowns - -  the nodal 
displacements - -  is equal to unity. Conversion to the dimensionless displacements and multiplication of them 
by r result in overestimated strains of the plate and tile insert (Fig. 1). 

The tensile force P = 0.195 and the strain energies of the plate and the insert ~E1 = 0.07504 and 
~5E2 = 0.01996 exceed the ones obtained in the solution in the  absence of friction, in which P = 0.184, 
~EI = 0.07322, ~E2 = 0.01874, l = 0.4708, and b = 0. As the stiffness of the insert increases for # = 0.3, the 
energy dissipated in friction increases from ~ [  = 0.0025 in the solution considered to ~ f  = 0.0053 in the case 
of an absolutely rigid insert with ~E1 = 0.1183. 

Figure 2 shows p, q, and a~,~, in the plate and Fig. 3 shows &os in the insert on F as functions of q. We 
have p = q = 0 for l ~< 7/~< 1. The maximum value cr~, = a ~  is reached on the free part of F in the vicinity 
of the point 7/= l, and the maximum absolute value of p is reached at the interior point of the contact region. 
In contrast to the case of an absolutely rigid insert [2], we have a ~ ,  > 0 in the neighborhood of the point 
7/= 0. Because of friction, the values of a ,~  and the stress-concentration coefficient K = Hp-lg~,~ increase 
from 0.3282 and 4.460, respectively, for # = 0 to 0.3873 and 4.965, respectively, for # = 0.3. 

As E2/EI decreases for ~ = 0, # = 0.3, and w = 1, the values of P ,  ~E,  and (~//rb) and the maxima 
a ~  and &s0 on F decrease, whereas the values of l and b increase. We have l = 0.4748 and b = 0.02366 for 
Ez = 16E1 and l = 0.4868 and b = 0.2054 for E2 = 0.25E1. 

A solution of the contact problem in the presence of a clearance and friction for Eqs. (1.1) with 
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Fig. 4. Lengths of the contact region l (curve 1) and the at tachment  region b curve 2) 
versus the displacement w of the right side of the plate in the problem with boundary 
conditions in version 2 in the presence of a clearance and friction (e = 0.05, # = 0.3, and 
E1 = E2). 

Fig. 5. Hoop stress a ~ ,  (curve 1) and normal p and tangential q forces (curves 2 and 3) 
on the hole contour in the plate in the solution of the problem given in Fig. 4 for l = 0.25, 
b = 0.1824, and w = 1.1062. 

TABLE 2 

Solution /~ 

UO) 0.3 

U (2) 0.3 

U(3) 

l 

0.1455 

0.15 

b 

0.1309 

0.1339 

P.102 

4.651 

4.694 

0E1"103 0E2"103 

6.411 1.833 

6.481 1.836 

6.427 1.874 

0.1017 

0.1029 

K 

5.468 

5.483 

5.313 

boundary conditions (2.1), (2.2), and (5.1) in version 1 was obtained for c = 1, c = 0.05, p = 0.3, and 
E1 = E2 in 16 steps variable in l (l = 0.05-0.45). For l = 0.05, zero differences of tangential displacements 
vs = 0 were assigned in the at tachment region. Curves 1 and 2 in Fig. 4 show the parameters l and b as 
functions of w. In contrast  to the case of an absolutely rigid insert [2], the signs of q and 7)s in the slip region 
do not change during loading and the plate edge slides over the insert contour in the clockwise direction. As w 
increases, the length of the at tachment region reaches a maximum b = 0.1869 (l = 0.225) and w = 0.8445 and 
then decreases (curve 2 in Fig. 4) but not as rapidly as in the solution for an absolutely rigid insert [2]. The 
dissipated energy r  is negligibly small for l ~< 0.225, and then it sharply increases but remains well below 
the strain energies of the plate and the insert. For l = 0.45, it is approximately 1.6% of ~5 E = ~SE1 + r 

Figure 5 shows p, q, and ar on Fp for l = 0.25, b = 0.1824, w = 1.1062, and P = 0.1559. It can be 
seen that aTT < 0 and ~** < 0 in the neighborhood of the point r / =  0. 

For the same value of w, the difference between the solutions of the problems for Eqs. (1.1) and 
boundary conditions (2.1), (2.2), and (5.1) of versions 1 and 2 (the corresponding solution vectors are denoted 
by U (1) and U (2), respectively) is small. For small values of w, these solutions differ insignificantly from 
solutions ignoring friction. Table 2 lists the values of #, l, b, P ,  OE1, and r the maximum hoop stress 
at the edge of the hole c~ , ,  and the stress-concentration coefficient K = HP-lcr;~ calculated for c = i, 

e = 0.05, E1 = E2, and w = 0.3838 in the solutions U (1) and U (2) for # = 0.3 and in the solution U (a) of the 
problem for Eqs. (1.1) with boundary conditions (2.1), (2.2), and (5.3) in version 2 for ~ = 0. The boundary 
conditions in version 1 are less restrictive for the plate and the insert than the boundary conditions in version 
2: the values of l, b, P ,  e E l ,  r cr~,~, and K in U (1) are lower than those in U (2). 

977 



REFERENCES 

1. 

2. 

3. 
4. 

5. 

6. 

7. 

8. 

9. 

10. 

S. P. Timoshenko and J. Goodier, Theory of Elasticity, McGraw-Hill, New York (1970). 
V. N. Solodovnikov, "Effect of friction in a contact problem for a plate with a pin," Prikl. Mekh. 
Tekh. Fiz., 39, No. 4, 184-192 (1998). 
K. L. Johnson, Contact Mechanics, Cambridge Univ. Press, England (1985). 
P. D. Mangalgiri, B. Dattaguru, and A. K. Rao, "Finite element analysis of moving contact in 
mechanically fastened joints," Nucl. Eng. Des., 78, 303-311 (1984). 
R. A. Naik and J. H. Crews, Jr., "Stress analysis method for a clearance-fit bolt under bearing loads," 
AIAA J., 24, No. 8, 1348-1353 (1986). 
V. N. Solodovnikov, "Solution of the contact problem for a pin-loaded plate," Prikl. Mekh. Tekh. Fiz., 
38, No. 1, 120-127 (1997). 
M. W. Hyer and E. C. Klang, "Contact stresses in pin-loaded orthotropic plates," Int. J. Solids 
Struct., 21, No. 9, 957-975 (t997). 
K. J. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, New 
Jersey (1982). 
D. K. Fadeev and V. N. Fadeeva, Computational Methods of Linear Algebra [in Russian], Fizmatgiz, 
Moscow-Leningrad (1963). 
J. Boussinesq, Application des Potentials a L'etude de L'eqiIibre et du Mouvement des Solides 
Elastiques, Gauthier-Villard, P~ris (1885). 

978 


